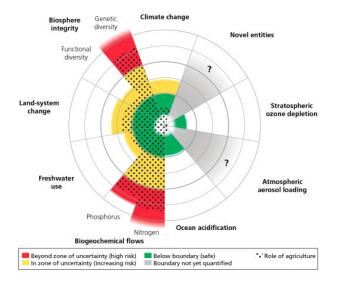
The health, nutritional, and environmental aspects of sustainable diets – findings from the EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems

> Marco Springmann Oxford Martin Programme on the Future of Food Nuffield Department of Population Health University of Oxford

Environmental impacts of the food system

The current food system is environmentally unsustainable:


- major driver of climate change (25% of GHG emissions, Vermeulen et al, 2012);
- major driver of land-use change and biodiversity loss (40% of the Earth's surface, Ramankutty et al, 2008; Houghton et al, 2012);
- major user of freshwater resources (70% of global freshwater withdrawals (WWAP, 2012);
- major polluter of terrestrial and aquatic systems through fertilizer runoff (Vitousek et al, 1997) (→ dead zones in coastal oceans, Diaz and Rosenberg, 2008)

Environmental impacts of the food system

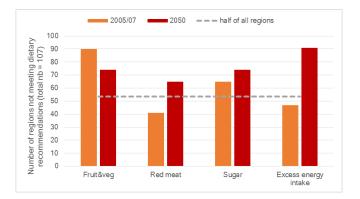
The current food system is environmentally unsustainable:

- major driver of climate change (25% of GHG emissions, Vermeulen et al, 2012);
- major driver of land-use change and biodiversity loss (40% of the Earth's surface, Ramankutty et al, 2008; Houghton et al, 2012);
- major user of freshwater resources (70% of global freshwater withdrawals (WWAP, 2012);
- major polluter of terrestrial and aquatic systems through fertilizer runoff (Vitousek et al, 1997) (→ dead zones in coastal oceans, Diaz and Rosenberg, 2008)
- \rightarrow major driver of planetary impacts

Planetary boundaries

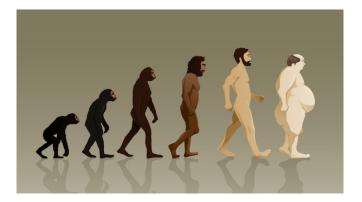
Steffan et al (2015), Campbell et al (2017)

Marco Springmann

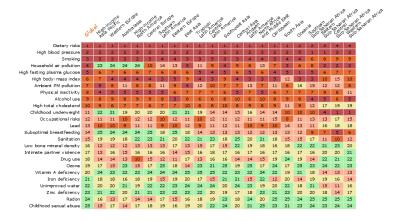

Concept:

- Define a safe operating space for humanity (Rockström et al, 2009);
- Transgressing put ecosystems at risk of being destabilised and losing regulating functions on which populations depend

Health impacts of the food system


Current diets are not healthy:

• Less than half of all countries meet or are projected to meet dietary guidelines on red meat, fruits and vegetables, sugar, and total energy intake (Micha et al, 2015; Springmann et al, 2016).


Health impacts of the food system

 Global prevalence of overweight increased over a third, and obesity rates doubled over last 30 years (Stevens et al, 2012).

Health impacts of the food system

• Dietary risks are leading risk factors globally and in most regions (GBD, 2013):

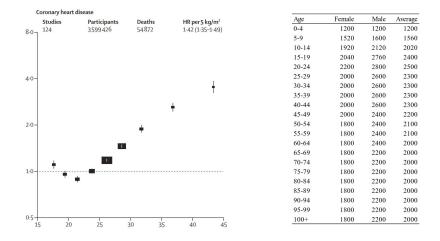
Goal of the EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems:

• Achieve a sustainable food system that can deliver healthy diets for a growing population.

Approach:

- Group of 19 commissioners and 18 co-authors from 16 countries and various fields, including human health, agriculture, political science and environmental sustainability.
- Define a healthy reference diet
- Define planetary boundaries of the food system
- Analyse diets and food system changes to stay within planetary boundaries
- Outline strategies to achieve healthy diets from sustainable food systems by 2050.

Healthy diets


Evidence base for devising healthy diets: relative risks

Food group	Reference	Endpoint	Unit	Relative risk (low, mean, high)
Processed	Micha et al (2012)	CHD	50 g/d	• • •
	Chen et al (2013)	Stroke	50 g/d	
	Chan et al (2011)	Colorectal cancer	50 g/d	••••
meat	Feskens et al (2013)	Type 2 diabetes	50 g/d	• • •
meat	Wang et al (2016)	CVD mortality	50 g/d	•••
	Wang et al (2016)	Cancer mortality	50 g/d	••
	Wang et al (2016)	All-cause mortality	50 g/d	•••
	Chen et al (2013)	Stroke	100 g/d	••••
Red meat	Chan et al (2011)	Colorectal cancer	100 g/d	••••
Reu meat	Feskens et al (2013)	Type 2 diabetes	100 g/d	• •• •
	Abete et al (2014)	CVD mortality	100 g/d	
	Mullie et al (2016)	All-cause mortality	200 mL/d	640
	Mullie et al (2016)	CHD	200 mL/d	•••
	Mullie et al (2016)	Stroke	200 mL/d	••••
Dairy	Aune et al (2013)	Type 2 diabetes	200 g/d	• • •
Dairy	Aune et al (2013)	Type 2 diabetes (adj, red meat intake)	200 g/d	•••
	Aune et al (2012)	Colorectal cancer	200 g/d	•••
	Aune et al (2012)	Colorectal cancer (adj, red meat intake)	200 g/d	• • •
	Aune et al (2015)	Prostate cancer	200 g/d	
	Zheng et al (2012)	CHD mortality	15 g/d	•••
Seafood	Zheng et al (2012)	CHD mortality	> 71 g/d	• • •
	Larsson and Orsini (2011)	Stroke	43 g/d	
	Zhao et al (2016)	All-cause mortality	high vs low	
	Zhao et al (2016)	All-cause mortality (adj, red meat intake)	high vs low	•••
	Zhao et al (2016)	All-cause mortality (adj, fruit and veg intake	e high vs low	•••

Food group	Reference	Endpoint	Unit	Relative risk (low, mean, high)
Nuts	Aune et al (2016)	CHD	28 g/d	•••
	Aune et al (2016)	Stroke	28 g/d	••••
	Aune et al (2016)	CVD	28 g/d	•••
	Aune et al (2016)	All-cause mortality	28 g/d	
	Afshin et al (2014)	CHD	57 g/d	•
Legumes	Zhu et al (2015)	Colorectal cancer	high vs low	••••
Legumes	Zhu et al (2015)	Colorectal cancer (adj, red meat intake)	high vs low	••••
	Zhu et al (2015)	Colorectal cancer (adj, fruit and veg intake)	high vs low	
	Aune et al (2017)	CHD	200g/d	
Fruit and	Aune et al (2017)	Stroke	200g/d	•••
vegetables	Aune et al (2017)	CVD	200g/d	
vegetables	Aune et al (2017)	Cancer	200g/d	-
	Aune et al (2017)	All-cause mortality	200g/d	
Whole grains	Aune et al (2016)	CHD	90 g/d	•••
	Aune et al (2016)	Stroke	90 g/d	• • •
	Aune et al (2016)	CVD	90 g/d	••••
	Aune et al (2016)	Cancer mortality	90 g/d	••••
	Aune et al (2016)	All-cause mortality	90 g/d	••••

Springmann et al, 2019, Environmental Nutrition, 1st Edition, Chapter 14

Healthy body weight: The Global BMI Mortality Collaboration (2016), WHO (2004)

Healthy diets

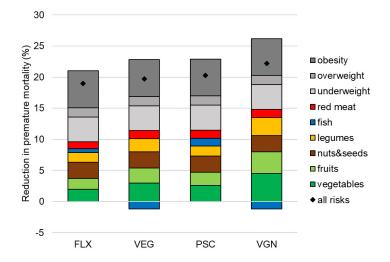
Predominantly **plant-based** dietary patterns (flexitarian, pescatarian, vegetarian, vegan):

		Macronutrient intake grams per day (possible range)	Caloric intake kcal per day
	Whole grains Rice, wheat, corn and other	232	811
	Tubers or starchy vegetables Potatoes and cassava	50 (0–100)	39
1	Vegetables All vegetables	300 (200–600)	78
6	Fruits All fruits	200 (100–300)	126
•	Dairy foods Whole milk or equivalents	250 (0-500)	153
9 *>	Protein sources Beef, lamb and pork Chicken and other poultry Eggs Fish Legumes Nuts	14 (0-28) 29 (0-58) 13 (0-25) 28 (0-100) 75 (0-100) 50 (0-75)	30 62 19 40 284 291
•	Added fats Unsaturated oils Saturated oils	<mark>40</mark> (20-80) 11.8 (0-11.8)	354 96
	Added sugars All sugars	31 (0-31)	120

Consumption changes (%) to reach flexitarian diets in 2030:

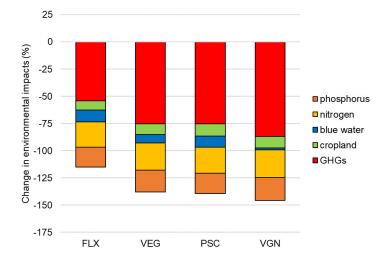
Food groups	World	HIC	UMC	LMC	LIC
red meat	-82	-90	-83	-78	-57
sugar	-48	-56	-68	-39	-15
white meat	-38	-59	-52	-6	-7
milk&eggs	-32	-55	-31	-17	-8
staples	-28	8	-16	-36	-33
fish	50	20	98	46	106
vegetables	55	50	92	35	247
fruits	59	24	24	72	117
legumes	249	485	198	240	187
nuts	280	336	294	248	335

Analysis of diets:

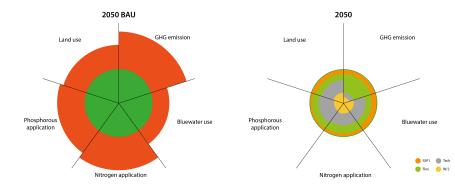

- Nutritional analysis: nutritional content of food groups for 24 nutrients based on GENuS dataset (Smith et al, 2016) and USDA (B5, B12); comparison to WHO recommendations;
- Mortality analysis: comparative risk assessment with 9 dietary and weight-related risk factors and 5 disease endpoints based on Oxford Global Health model (Springmann et al, 2016a,b);
- Environmental analysis: country-specific footprints for GHG emissions, cropland use, freshwater use, nitrogen application, phosphorus application (Springmann et al, 2018a).
- Food-systems analysis: combined analysis of improvements in technologies and management, reductions in food loss and waste, and dietary changes to more plant-based diets (Springmann et al, 2018b).

Nutritional analysis

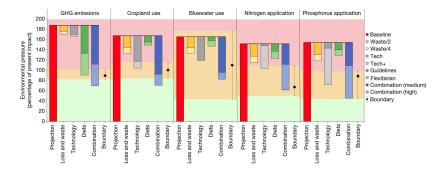
Nutrient	unit		Diet scenario					
Nuuleni	unit	rec	BMK	FLX	PSC	VEG	VGN	
calories	kcal	2084	2146	2084	2084	2084	2084	
protein	g	>52	68.4	70.6	72.5	65.0	64.7	
carbohydrates	g	<391	324	274	278	289	304	
fat	g		68.9	81.8	78.1	77.3	71.3	
saturatedFA	g	<23	22.5	19.7	17.5	17.2	13.4	
monounsatFA	g		26.7	31.4	28.1	27.7	26.1	
polyunsatFA	g	>14	16.7	27.7	27.2	27.4	27.6	
vitaminC	mg	>42	86.9	148	163	171	196	
vitaminA	μg	>544	482	627	679	694	703	
folate	μg	>364	280	553	577	644	733	
calcium	mg	>520	556	621	660	630	489	
iron	mg	>17	16.4	18.8	19.3	19.5	21.1	
zinc	mg	>6.1	10.8	10.4	10.4	10.2	10.3	
potassium	mg	>3247	2506	3383	3555	3634	3952	
fiber	g	>29	26.0	35.5	36.6	39.9	44.6	
copper	mg	>0.8	1.6	2.3	2.3	2.5	2.7	
phosphorus	mg	>757	1312	1379	1429	1366	1337	
thiamin	mg	>1.1	1.3	1.5	1.5	1.5	1.6	
riboflavin	mg	>1.1	0.9	0.9	1.0	0.9	0.9	
niacin	mg	>14	18.7	17.5	17.4	16.0	16.8	
vitaminB6	mg	>1.2	6.1	6.1	6.2	6.1	2.3	
magnesium	mg	>205	436	527	543	561	596	
pantothenate	mg	>4.7	5.7	5.4	5.4	5.3	4.9	
vitaminB12	μg	>2.2	3.0	2.4	3.7	0.8	0.0	


Springmann et al, Lancet Planetary Health 2018

Chronic-disease analysis


Springmann et al, Lancet Planetary Health 2018

Environmental analysis


Springmann et al, Lancet Planetary Health 2018

Technological and dietary changes are needed to stay within **planetary boundaries** of the food system:

Springmann et al, Nature 2018

Zoom in \rightarrow ambition of food-system changes, environmental domains, range of planetary boundaries:

Planetary boundaries

Relationship of planetary boundaries and policy goals (SDGs):

Planetary boundary	Motivation	Method	Global targets	Comment
Climate change	Further increasing GHG emissions increase climate-related risks to ecosystems and cultures, e.g. from sea-level rise and increased occurrence of extreme weather events, such as heat waves, extreme precipitation, and coastal flooding ¹² .	Food-related GHG emissions in line with limiting global warming to below 2 degrees Celsius ⁶³ with uncertainty derived from a model comparison of integrated assessment models ⁵⁵ .	Paris Climate Agreement	The Paris Agreement's long-term goal is to keep the increase in global average temperature to well below 2 °C above pre-industrial levels; and to limit the increase to 1.5 °C, since this would substantially reduce the risks and effects of climate change. Reflected in SDG 13 and in the plenatary boundary for climate change.
Land-system change	Further increasing the amount of agricultural land through deforestation could impact the functioning of ecosystems ³ , release large amounts of carbon dioxide ¹ , and diminish habitat for wild species and thereby pose major threats to biodiversity ⁴ .	Analysis of conservation levels for each forest biome in line with preserving ecosystem integrity, scaled up to a global value ¹² and related to cropland use ^{33,39} .	Aichi Biodiversity Targets	Target 5: By 2020, the rate of loss of all natural habitats, including forests, is at least halved and where feasible brought close to zero, and degradation and fragmentation is significantly reduced. Related to SDG 15 and planetary boundary for land-system change.
Freshwater use	Further depletion and overexploitation of groundwater resources impairs natural streamflow, wellands and related ecosystems, and can lead to land subsidence and salt-water intrusion in deltaid areas ⁶ and, eventually, to cascading impacts on the global hydrological cycle ⁷⁷ .	Basin-level assessments of the environmental flow requirements of river systems ^{12,20} scaled to agricultural bluewater use ^{5,33} .	SDG target on water withdrawals	SDG 6.4: By 2030, substantially increase water- use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity. In line with planetary boundary for freshwater use.
Bio-geochemical flows	Agricultural runoff from overapplication of fertilizers leads to eutrophication, an increase in chemical nutrients in the vater ^{7,9} , which in turn can lead to excessive blooms of algae that deplete underwater oxygen levels resulting in so-called dead zones in coastal oceans ⁹ .	Analysis of eutrophication risk based on nitrogen and phosphorus pollution estimates of agricultural runoff and ecological thresholds ¹⁹ , with an upper value in line with re- balancing of application between over and under-applying regions ³² .	SDG target on nutrient pollution	SDG 14.1: By 2025, prevent and significantly reduce marine pollution of all kinds, in particular from land-based activities, including marine debris and nutrient pollution
Healthy diets	Levels of malnutrition are increasing, in particular overweight, obesity, and dietary risks. All people should have access to healthy and nutritious diets.	Review of literature on healthy eating and construction of general food-based dietary guidelines in line with healthy diets.	NCD Agenda	SDG 3.4: the target is to "reduce by one third premature mortality from NCDs through prevention and treatment, and promote mental health and wellienig", which builds on the World Health Organization (WHO) "25x25" NCD target.

Improvements in technologies and management:

• What is needed:

- Close yield gaps to 75%
- Rebalance fertilizer application and increase use-efficiency (N) and recycling (P)
- Increase basin efficiency, storage capacity, rainwater utilization
- Increase feed conversion efficiency and manure management, and adapt agro-ecological practices for irrigation and cropping

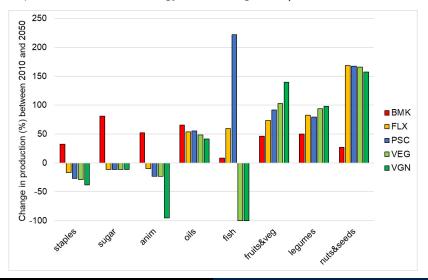
• Policy implications:

- Investments in public infrastructure
- Farm-level incentives/support to adopt best available technologies
- Better environmental regulation (eg water use and quality)

Reductions in food loss and waste:

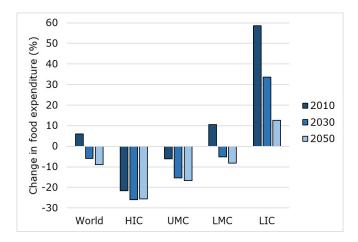
- What is needed:
 - Reduce food loss and waste by at least half
- Policy implications:
 - *Loss*: investments in agricultural infrastructure, technological skills, storage, transport and distribution
 - *Waste*: Closed-loop supply chains, packaging, labelling and awareness campaigns

Improvements in socio-economic development:

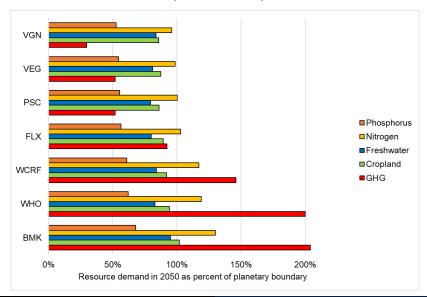

- What is needed:
 - Pathway with higher income and lower population growth would be beneficial
- Policy implications:
 - Investments in education, especially for women
 - Improved access to general and reproductive health services

Improvements in diets:

- What is needed:
 - Limit red meat consumption to less than one serving per week
 - Limit white meat to less than half a portion a day, and dairy to less than one serving per day
 - Limit sugar and total energy intake in line with recommendations
 - Eat more than five portions of fruits and veg
- Policy implications:
 - Multicomponent approaches essential
 - Media and education campaigns; labelling and consumer information;
 - Fiscal measures, such as taxation, subsidies, and other economic incentives;
 - School and workplace approaches; local environmental changes;
 - Update national dietary guidelines
 - Make agricultural policies health-sensitive


Implications for agriculture

Large-scale transition to more plant-based foods (in addition to improvements in technology and management):


Marco Springmann Healthy and sustainable diets

Changes in food expenditure due to dietary change:

Implications for dietary guidelines

Current dietary guidelines (WHO, WCRF) are not sustainable:

Marco Springmann Healthy and sustainable diets

Healthy diets and sustainable food systems are achievable, but it will require:

- Synergistic combination of improvements in technologies and management, reductions in food loss and waste, and dietary changes towards healthier, more plant-based diets;
- Strong regulation and right incentives are required;
- Combining measures with attention to local contexts important for defining region-specific sustainable-development pathways;
- The country-specific data and suite of scenarios produced for the report and associated studies can be a starting point.

Country-level results available in:

- Willett et al, 2019, Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems, *The Lancet* 392:10270, 447-492.
- Springmann et al, 2018, Options for keeping the food system within environmental limits, *Nature* 562, 519-525.
- Springmann et al, 2018, Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail, *Lancet Planetary Health* 2, e451-e461.

Contact, comments and suggestions:

• marco.springmann@dph.ox.ac.uk